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Abstract 

We model the dynamics of stock-bond returns using a multivariate 
high-frequency-based volatility (HEAVY) model. Unlike conventional 
GARCH models that only carry daily information, the HEAVY effectively 
extracting the information from high-frequency data reveals a relatively 
short response time and exhibits short-run momentum effects in modeling 
the covariance dynamics. The performance of considering both of the 
distinguishing properties are investigated out-of-sample using data on the 
S&P 500 index and 30-year T-bond assets. In an asset allocation 
perspective, we find that forecasts of the covariance matrix from HEAVY 
are significantly superior to those based on GARCH over shorter horizons 
of up to one week. Investors with higher risk aversions are willing to pay 
substantial performance fees to obtain the economic value of volatility 
timing using the HEAVY strategy instead of a GARCH strategy.  
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1. Introduction 

Stocks and bonds are two primary asset classes in investing practices, and 

understanding the comovement between stock and bond returns has 

important implications in portfolio optimization. Over years, a variety of 

econometric models has been employed for modeling the joint distribution 

of stock and bond returns.1 Using a multivariate generalized 

autoregressive conditional heteroskedasticity (GARCH) model, Bollerslev 

et al. (1988) find that the conditional covariance matrix on stock-bond 

assets displays a very substantial time variation. De Goeij and Marquering 

(2004, 2009) find evidence for asymmetries in the conditional variances 

and covariance. Connolly et al. (2005) and Guidolin and Timmermann 

(2006) consider regime switching models for the joint distribution of US 

stock and bond returns. Engle and Colacito (2006) value the time variation 

in stock-bond correlation for asset allocation. Chou and Liu (2010) and Wu 

and Liang (2011) further model the conditional dependence using 

copula-GARCH models. These studies support the importance of 

understanding the relations between the volatilities and co-volatilities for 

spot and bond returns.  

Multivariate GARCH models are widely used in many financial 

applications, because multi-step forecasts of covariance matrices are 

relatively easily obtained using the recursive generating structure. 

Standard GARCH models specify the covariance matrix as functions of 

past low-frequency (LF, hereafter) data (i.e., daily returns).2 Andersen et 
                                                        
1 It should be noted that, instead of using GARCH modelled as functions of past returns, 
there are studies considering certain economic factors driving the stock-bond comovement; 
see, e.g., Baele et al. (2010).  
2 According to the survey article of Bauwens et al. (2006), multivariate GARCH models 
can be divided into three; (i) generalizations of the univariate standard GARCH model; (ii) 
linear combinations of univariate GARCH models; (iii) nonlinear combinations of 
univariate GARCH models.  
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al. (2001) and Barndorff-Nielsen and Shephard (2002) show that latent 

volatility can be computed accurately using high-frequency (HF, hereafter) 

data (e.g., intraday returns), whereas LF returns only provide very weak 

signal about volatility measurements. Today many financial data sets 

include HF data in addition to daily prices. It is shown that incorporating 

realized volatility measures when modeling the dynamic properties of 

volatility is very beneficial, and leads to better empirical fit than standard 

GARCH that only use LF returns (Engle, 2002; Shephard and Sheppard, 

2010; Hansen et al., 2012).  

In line with the recently studies, this paper considers a multivariate 

volatility model with HF data to specify the dynamics between stock and 

bond returns. The multivariate high-frequency-based volatility (HEAVY) 

model introduced by Noureldin et al. (2012) is adopted to model the 

conditional covariance matrix dynamics. Compared with the standard 

GARCH, covariance forecasts from HEAVY model have a relative short 

response time and exhibit short-run momentum effects. The former 

indicates that the HEAVY responses quickly during times of rapid changes 

in volatility and correlation. The latter says that the tendency of volatility 

forecasts can continue over short horizons before mean reverting. By 

effectively extracting information about the current levels of volatilities 

and correlations from HF data, the HEAVY model shall be particularly 

useful for modeling stock-bond returns during periods of rapid changes in 

the underlying covariance structure.  

Portfolio optimization is a natural application for evaluating the 

forecasts from HEAVY model. In the classical asset allocation framework, 

an investor has to choose portfolio weights to minimum portfolio variance 
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subject to a required return constraint. Accordingly, investors with 

different covariance forecasts will hold different portfolios. To avoid 

estimating the true mean returns as discussed by Jagannathan and Ma 

(2003), we measure the value of covariance information by finding the 

global minimum variance portfolios (GMVP) using US stock and bond data 

over a 4-year period covering the 2008 subprime crisis. An advantage of 

studying GMVP is that the corresponding portfolio weights are determined 

only on forecasts of the covariance matrix for the given the investment 

horizon. This allows us to isolate the mean impacts and focus on comparing 

the covariance forecasts in an asset allocation perspective. In addition to 

conduct statistical comparisons, the benefits of covariance forecasts using 

HF data are assessed by adopting the conditional utility-based evaluation 

approach suggested by Hautsch et al. (2013).  

The structure of the paper is as follows. In the next section we introduce 

the HEAVY model, and in Section 3 we present the GMVP framework for 

evaluating the performance of volatility timing. Section 4 contains the 

results of our empirical analysis, while Section 5 concludes the paper.  

 

 

2. The Bivariate HEAVY Model 

This section introduces a new class of volatility model that utilizes 

high-frequency data to describe the co-movement between stock and bond 

returns. We employ the multivariate HEAVY model of Noureldin et al. 

(2012) to model the conditional covariance matrix. Unlike standard 

GARCH models, covariance forecasts from HEAVY model have a relative 

short response time and exhibit short-run momentum effects. The 
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distinguishing properties might have essential advantages in performing 

volatility-timing strategies. The details of the model are as follows.  

Let 
t

R  denote an 2 1´  vector of daily returns consisting of stock and 

bond assets. Given the success of GARCH models, we assume that the 

return vector can be decomposed as follows:  

 1/2
t t t t

m= +R H z , (1) 

where 
1

: E[ | ]
t t t

m -= R =  and 2
1

: E[( ) | ]
t t t t-= -H R m = , respectively, 

represent the conditional mean vector and the conditional covariance 

matrix, conditioned on the information set 
1t-= . Furthermore, we assume 

that the random vector 
t

z  satisfies E[ ] 0
t
=z  and 

2
var[ ]

t
=z I , where 

2
I  

is an identity matrix of order 2. To keep simplicity, the conditional means 

are assumed time-invariant, though a vector autoregressive (VAR) 

representation could be adopted as in, e.g., De Goeij and Marquering 

(2009).  

What remains to be specified is the covariance matrix process 
t

H . Over 

years, various parametric GARCH-type models have been employed for 

this purpose. The essential characteristic of these models is that they 

utilize lagged LF data for the construction of 
t

H . Andersen et al. (2003) 

and Barndorff-Nielsen and Shephard (2004) indicate that returns yield 

very weak signals about latent volatility, whereas HF-based realized 

measures provide very accurate estimates. This implies that these 

standard GARCH models might perform poorly in situations where 

volatility/correlation changes rapidly to a new level (Noureldin et al., 2012). 

Accordingly, GARCH-like models encompassing finer realized measures 

are recently introduced; see Engle (2002), Fleming et al. (2003), Hansen et 

al. (2014), and Noureldin et al. (2012) for examples. The coincidence is that, 
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volatility forecasts use lagged realized measures are superiority to those 

use lagged squared/cross-product returns. 

We model the covariance matrix by the recently introduced multivariate 

HEAVY model of Noureldin et al. (2012). Denote 
t

V  the 2 2´  realized 

measure and 
t t t

¢=P u u  the 2 2´  outer product of daily returns, where 
1/2:

t t t
=u H z  given in (1). The two-equation model approached by the BEKK 

parameterization of Engle and Kroner (1995) can be compactly written as 

 HF
1 1 1

E[ | ]
t t t H H H t H H t H- - -

¢ ¢ ¢º = + +P H C C B H B A V A=  (2) 

 HF
1 1 1

E[ | ]
t t t M M M t M M t M- - -

¢ ¢ ¢º = + +V M C C B M B A V A= , (3) 

where 
H

C  and 
M

C  are 2 2´  lower-triangular parameter matrices, 
H

B , 

H
A , 

M
B  and 

M
A  are 2 2´  parameter matrices. The parameterization 

guarantees the positive definite of 
t

H  for all t  under mild restrictions. In 

the case of a diagonal HEAVY model, 
H

B , 
H

A , 
M

B  and 
M

A  each have 2 

free parameters, and 
H

C  and 
M

C  each have 3 free parameters. 

Noureldin et al. (2012) call (2) the HEAVY-P equation, where (3) is named 

the HEAVY-V equation. The latter is necessary for multi-step forecasts of 

t
H  due to the fact that 

1t-V  is present in (2).  

The HEAVY system utilizes recently developed estimators of quadratic 

covariation that have shown to be more precise compared to outer product 

of daily returns. For example, a realized covariance matrix estimator on 

day t  is defined as 
, ,1

n

t j t j tj
r r

=
¢= åV , where 

,j t
r  denote the jth uniformed 

spaced vector of returns. In the presence of microstructure noise, one shall 

switch to some noise-robust realized covariance estimators for a correction 

purpose. Accordingly, this paper uses the realized kernel (RK) of 

Barndorff-Nielsen et al. (2011) for the construction of 
t

V , as follows:  
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 RK
n

h
h n

h
k

L=-

æ ö÷ç ÷= Gç ÷ç ÷çè ø
å , (4) 

where 
1

n

h j j hj h
x x -= +

¢G = å  for 0h ³=  and h h-
¢G = G  for 0h < , 

j
x  is the 

high frequency vector returns defined by jittering end conditions, L  is the 

bandwidth parameter aims to control the number of leads and lags used in 

the non-stochastic Parzen kernel function ()k × . Under a general form of 

noise, the authors show that the RK is consistent and positively definite for 

the latent covariance matrix.  

Incorporating realized measures when modeling the dynamic properties 

of volatility is very beneficial, and leads to better empirical fit than the 

conventional GARCH model 

 LF
1 1 1

E[ | ] :
t t t H H H t H H t H- - -

¢ ¢ ¢= = + +P H C C B H B A P A= , (5) 

which only uses daily returns. Noureldin et al. (2012) indicate that the 

primary distinction between HEAVY and GARCH is the conditioning 

information set 
1t-= . HEAVY conditions on HF

1t-=  influenced by past 

realized volatility measures, whereas GARCH conditions on LF
1t-=  

influenced by past daily returns. They show that HEAVY models have a 

relatively short time response than that of standard GARCH models, 

meaning the formers’ forecasts are faster in situations where the level of 

volatility or correlation is subject to abrupt changes.  

Estimations of (2) and (3) can be carried out equation-by-equation via 

quasi-maximum likelihood (QML) estimators. Let 
H

J  and 
M

J  

respectively denote the true parameter vectors of HEAVY-P and HEAVY-V 

equations with the following log-likelihood functions: 

( )11
, 2
( ) log ( )

H t H H t t t
l c trJ -= - +H H P  and 

( )1
, 2
( ) log ( )n

M t M M t t t
l c trJ -= - +M M V , where 

H
c  and 

M
c  are some 
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constants. By maximizing the log-likelihood functions, we obtain the QML 

estimators as 

 ,
1

ˆ argmax ( )
H

T

H H t H
t

l
J

J J
=

= å  and ,
1

ˆ argmax ( )
M

T

M M t M
t

l
J

J J
=

= å , (6) 

where T  stands for the total number of observations. By imposing a 

strictly stationary and ergodic solution, the QML estimators show strong 

consistency for the HEAVY system. The covariance stationary condition 

given in Noureldin et al. (2012) is analogous to the one in Engle and Kroner 

(1995). 

Forecasting the conditional covariance matrix of daily returns is a key 

input for volatility timing (Fleming et al., 2001, 2003). In the HEAVY 

system, one-step forecasts are directly computable using (2). When s-step 

forecasts of 
t

H  are needed, the proposition 2 in Noureldin et al. (2012) 

gives the s-step forecasts of 
t

H  for 2,3,...s = , can be expressed as 

 

1
HF 1 1

1
1

1 1
1 1 1

1
1 1

E[ | ]

( ) ( )

s
i s

t s t H H H t
i

s s i
i j s i
H H M M M M M t

i j

h B C B h

B A B A C B A m

-
- -

+ +
=
- - -

- - - -
+

= =

= +

ì üï ïï ï+ + + +í ýï ïï ïî þ

å

å å

=
, (7) 

where : vech( )
t t

h = H  and : vech( )
t t

m = M  are 3 1´  vectors by stacking 

the lower triangular part and the main diagonal of the 2 2´  matrices, 

2 2 2
( ) ( )

H H H
C L D vech I= ÄC C , 

2 2
( )

H H H
B L D= ÄB B  and 

2 2
( )

H H H
A L D= ÄA A  are redefined using the non-stochastic elimination 

and duplication matrices 
2

L  and 
2

D . Noureldin et al. (2012) exhibit that 

the profile of forecasts from HEAVY models differs from GARCH models 

particularly in persistence and short-run momentum effects. The 

momentum effects say that, before mean reverting, the tendency of 

volatility forecasts can continue over short horizons, whereas the GARCH 
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forecasts by (5) only reveals monotonically mean reverts. The differences 

point to the information content of realized measures for the forecasts of 

t
H .  

 

 

3. Evaluations by Finding the Global Minimum Variance Portfolios 

In this section, we describe the methodology for measuring the economic 

value of volatility timing. We examine the economic gains of constructing 

the GMVP in terms of forecasts of the conditional covariance matrix. The 

GMVP problem can be formulated as 

 
,

, , ,
min

t t h
t t h t t h t t h

+
+ + +

¢ S
w

w w  subject to ,
1

t t h
i+

¢ =w , (8) 

where 
,t t h+w  is the 2 1´  vector of portfolio weights, 

, ,
:=cov[ | ]

t t h t t h t+ +S R =  

is the 2 2´  true covariance matrix of returns 
,t t h+R  from day t  to t h+ , 

and i  is a 2 1´  vector of ones. For simplicity, we assume 

, 1,1
= E[ | ]

h

t t h t r t r tr+ + - +=
S Så = . Solving the problem yields the GMVP portfolio 

weights given by 

 
1

,
, 1

,

t t h
t t h

t t h

i

i i

-
+

+ -
+

S
=

¢S
w , (9) 

and the corresponding portfolio return and conditional portfolio variance 

are given by 
, ,t t h t t h+ +
¢w R  and 

, , ,t t h t t h t t h+ + +
¢ Sw w  , respectively.  

The general mean-variance portfolio optimization problem involves a 

vector of expected excess returns (over the risk-free asset) on the risky 

assets. To avoid the effect of estimation error in the mean vector on 

portfolio weights, recent studies suggest investing into the GMVP instead 

of the tangency portfolio (e.g., DeMiguel et al., 2009; Hautsch et al., 2013; 
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Jagannathan and Ma, 2003). The GMVP portfolio weights are a special 

case when restricting the expected returns are identical and to be ones 

across all assets.  

To compare the performance of covariance forecasts, Patton and 

Sheppard (2009) illustrate a basic rule within the GMVP framework. Let 

, ,1
:

h

t t h t t rr+ +=
= åH H  for 1h ³  be an estimated covariance matrix from day 

t  to t h+ , and 
,

ˆ
t t h+w  be the associated GMVP weights computed 

according to (9). Then the conditional variance of GMVP based on 
,

ˆ
t t h+w  

must be larger than that based on the true portfolio weights 
,t t h+w :  

 , , , , ,
ˆ

t t h t t h t t h t t h t t h+ + + + +
¢ ¢S < Sw w w 

,
ˆ

t t h+w . (10) 

The implication is that the lower variance bound can only be attained if we 

know the true covariance matrix of the asset returns. To compute the 

conditional portfolio variance in practice, Hautsch et al. (2013) proxy 
,t t h+S  

in (10) by the realized covariance matrix 
,

Rcov
t t h+

 form day t  to t h+ , 

and obtain the resulting conditional variance estimate by 

 2,
, , ,

ˆ: Rcovp
t t h t t h t t h

t + + +
¢= w

,
ˆ

t t h+w . (11) 

Using this result, we can compare two competing covariance forecasts by 

comparing the conditional variance of the GMVP constructed by the 

models.  

In addition to statistical evaluations, the benefits of covariance forecasts 

are assessed by adopting the conditional utility-based evaluation approach 

suggested by Hautsch et al. (2013). Assume that the risk-averse investor is 

endowed with the quadratic utility function 

 2
, , ,

( ) 1 (1 )
2(1 )

p p p
t t h t t h t t h

U r r r
h

h+ + += + - +
+

, (12) 
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where 
, , ,

ˆ:p
t t h t t h t t h
r + + +

¢= w R  is the portfolio return associated with the 

estimated GMVP weights, 1,10h =  denote the investor’s relative risk 

aversions that follow Fleming et al. (2003) and DeMiguel et al. (2009). 

Given the portfolio returns ,GARCH
,
p

t t h
r +

 and ,HEAVY
,
p

t t h
r +

, hD  represents a fee the 

investor is willing to pay to switch from GARCH to HEAVY forecasts, given 

by 

 ,GARCH ,HEAVY
, ,

1 1

E[ ( ) | ] E[ ( ) | ]
T h T h

p p
t t h t t t h t

t t

U r U r h

- -

+ +
= =

= -Då å= = . (13) 

Hautsch et al. (2013) indicate that the solution hD  in (13) depends on the 

conditional portfolio variances, 
, ,

ˆ
t t h t t h+ +
¢ Sw

,
ˆ

t t h+w , and the conditional means, 

, ,
ˆ

t t h t t h
m+ +

¢w . Given that the expected returns id
,

( / 252)
t t h

hm m i+ =  are 

constant over time and identical across all assets for 1,...,t T h= - , the 

analytical solution for hD  is given by  

 
2

id id
2, 2,
GARCH HEAVY

1 1
252 252

p ph h
h

m m
t t

h h

æ ö÷ç ÷D = - + - + -ç ÷ç ÷çè ø
, (14) 

where 

 2,
, ,

1

1
ˆ: Rcov

T h
p

t t h t t h
tT h

t
-

+ +
=

¢=
- åw

,
ˆ

t t h+w . 

A grid of values of id { 0.05,0,0.05,0.1}m Î -  are suggested to control the 

impact of the assumed values on the switching fee hD . Under the 

assumption that id( / 252) 1 /h m h£ , we obtain 0hD >  when 
2, 2,
GARCH HEAVY

p pt t> . This evaluation approach is in spirit of Fleming et al. 

(2003), but transfers the unconditional to a conditional framework. Since 

the relationship in (10) holds only for conditional but not for unconditional 

variances, Hautsch et al. (2013) indicate that gains might be understated 

when the evaluations are carried using unconditional variances.  
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4. Data Description and Empirical Results 

We use HF data on S&P 500 equity index (symbol: SP) and 30-year 

Treasury bond (symbol: US) obtained from Tick Data Inc. to represent the 

stock and bond markets. The sample period is January 2, 1998 to 

December 31, 2007 with a total of 3528 trading days. According to Fleming 

et al. (2003), futures prices are used in terms of excess returns for volatility 

timing strategies. This also avoid the short sale constrains in asset 

allocation. Bonds with more than 10 years to maturity are considered in 

this paper, because long-term bonds are effectively matching their duration 

with stocks.3  

Estimations of a HEAVY system require both the information of returns 

and realized measures of volatility. To construct the return series, we 

generally use the nearby contract in each market as in Fleming et al. 

(2003). This means that when the trading volume of the nearest to expiry 

contracts are exceeded by the front month contracts, in the following 

business day the nearest contracts are switched to the second nearest to 

maturity contracts. The trading hours for stock contracts are from 8:30 a.m. 

to 3:15 p.m. whereas for bond contracts are from 7:20 a.m. to 2:00 p.m. 

(Central Time). Our analysis focuses on modeling the joint distribution 

when both markets are open; therefore we assume that the GMVP 

positions are created immediately after 8:30 a.m. and are closed before 2:00 

p.m. for the trading day. Accordingly, we measure the vector of daily 

                                                        
3 Connolly et al. (2005) indicate that their results using the 30-year bonds are 
qualitatively similar to those using the 10-year bonds. Accordingly, we choose to report the 
results using the 30-year T-bond.  
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returns, 
t

R , by the vector of open-to-close returns, as the logarithmic 

difference of closing (2:00 p.m.) and opening (8:30 a.m.) prices. This treats 

overnight returns as deterministic jumps as in Andersen et al. (2010) and 

matches the constructed open-to-close realized covariance matrices. Table 

1 provides summary statistics for the returns, for both open-to-close and 

close-to-close. As can be seen from the numbers, there do exist considerable 

overnight jumps especially for the stock market. In addition, including the 

noisy overnight returns might also diminish the performance difference 

between forecasts using LF and HF data. This provides the rationality of 

using jump-adjusted returns instead of that without jump corrections.  

＜Table 1 is inserted about here＞ 

For the daily realized variances and covariance, the multivariate RK 

estimator as in (4) are used for the construction of 
t

V . Instead of using 

tick-by-tick data, we use 1-minute synchronized returns obtained from 

Tick Data Inc. for the computations. As indicated by Chaboud et al. (2010), 

in deep and liquid markets like 10-year Treasury notes one can sample the 

returns once every 30 to 40 seconds using the realized kernel. For the 

bandwidth choice in (9), we follow the procedure from Barndorff-Nielsen et 

al. (2011). Averagely, bandwidth choice during the sample period is around 

14, ranging from 4 to 22. The numbers are applied to control the number of 

leads and lags in (9) for each business day. Under a general form of noise, it 

is shown that the multivariate RK with Parzen weight function is 

consistent and positively definite for the latent covariance matrix. In 

Figure 1 we graph the time series for the daily realized variances and 

correlations. The stock-bond return correlation displays very substantial 

time variations. The large negative spikes in realized correlations are 
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either associated with deep decrease in stock market values or coincides 

with a deflation scare, as in Baele et al. (2010). The negative correlation at 

the end of 1998 or 2007 for examples ascribed to a “flight-to-safety” 

phenomenon by Connolly et al. (2005) induces investors to flee stocks in 

favor of bonds. 

＜Figure 1 is inserted about here＞ 

After obtaining daily returns and realized measures, Table 2 exhibits the 

estimation results of the spot-futures distribution interpreted by the 

models. We split the full sample data in two: the period from 1998 to 2007 

is regarded as in-sample for estimation of the models; and the remaining 4 

years of data is used for out-of-sample analysis. We use the constrained 

numerical optimization procedure of MATLAB with the covariance 

stationary condition imposed for the estimations. In order to improve 

convergence, we use starting values based on the preliminary 

unconditional statistics with a range of rational values to ensure that the 

estimation procedure converges to a global maximum. The log-likelihood 

function with eigenvalues for each model is reported in the bottom of Table 

2. 

＜Table 2 is inserted about here＞ 

To test the significance of switching from GARCH to HEAVY-P, we apply 

the non-nested likelihood ratio test of Vuong (1989) based on the 

Kullback-Leibler information criterion. The test statistic is 3.33, indicating 

the significance of the improvement is relatively large. The eigenvalues 

interpreted by HEAVY-V range between 0.97 and 0.99. The values must be 

positive and lower than 1 to remain stationary. The smaller eigenvalues 

indicate a less persistence in variances and covariance, relative to the 
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estimates obtained by GARCH. The lower estimates of ii
b  by HEAVY 

indicate that a current shock does not permanently affect the conditional 

variance of all future horizons. Accordingly, putting higher weights on ii
a  

in HEAVY-P provides the potential for rapidly response to the changing 

markets. In the top panel of Figure 2 we give the level of volatility in the 

stock market, whereas the result for the bond is given in the middle panel. 

For the conditional correlations (implied by the BEKK representation), we 

give the figure in the bottom panel. The plots clearly reveal that GARCH 

provides smoothed estimates in fitting the data. Accordingly, GARCH 

models might perform poorly in situations where volatility changes rapidly 

to a new level.  

＜Figure 2 is inserted about here＞ 

Table 3 reports the GMVP performance of HEAVY and GARCH forecasts 

over the forecasting horizons. As can be seen from the numbers, the 

covariance forecasts based on HEAVY model are superior to those based on 

GARCH in terms of GMVP volatility. The superiority can last up to 27 days 

as evidenced by the variance ratio greater than 100. The performance is 

more pronounced up to 7 prediction days by conducting a DMW forecast 

comparison test of Diebold and Mariano (1995) and West (1996, 2006). In 

addition to statistical evaluations, economic gains of using HEAVY model 

are also reported in the last two column of the table, under the assumption 

of id 0.05m = . Using the conditional utility-based approach, the results 

clearly indicate that the switching fees in basis points up to 27 days are all 

positive, and investors with higher risk aversion attitudes are willing to 

pay much more to avoid any higher risk in constructing the GMVP. 

Interestingly, the switching fees increase monotonically from 5.8 to the 
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highest 96.17 with the corresponding of 1- and 18-day predictions. Our 

results provide evidences for significant short-run momentum effects in the 

conditional covariance matrix of stock and bond returns.  

＜Table 3 is inserted about here＞ 

 

 

5. Conclusions 

This paper we analyze the comovements between stock and bond returns 

by modeling the conditional covariance matrix using a new class of 

HF-based volatility model. The HEAVY system consists of two equations: 

HEAVY-P and HEAVY-V. Unlike standard GARCH models using LF data, 

the former focuses on modeling the conditional covariance matrix using the 

recently accuracy realized measures of volatility. The latter equation aims 

to provide conditional expectation dynamics of realized covariance matrix, 

which is essential for producing multi-step predictions in the HEAVY 

system. By efficiently extracting the informative information from HF data, 

the predictions from HEAVY exhibit a relative short response time and 

short-run momentum effects. The models are estimated using data on the 

S&P 500 and 30-year T-bond futures contracts. To provide insights into the 

value of using HEAVY predictions, we construct GMVP and compare the 

performance determined by the conditional covariance matrix forecasts. 

Based on the data from 1998 to 2007, the estimation results show that 

forecasts from HEAVY differ from GARCH in terms of persistence. The 

HEAVY puts higher weights on past realized covariance matrix allows the 

forecasts have the potential to response rapidly to the changing markets. 

Since investors are more concerned about the future than in the past, the 
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forecasting performance of the models over the 4-year data covering the 

2008 subprime crisis are compared within a conditional utility-based 

approach. The superiority of the forecasts from HEAVY over short horizons 

of up to a week is supported by performing statistical tests. The 

performance fees of switching from GARCH to HEAVY are all positive over 

investment horizons of up to one month. While the literature has shown 

that GARCH models with LF data are useful in modeling stock-bond 

volatility, our results further find that HF data are valuable in performing 

volatility-timing-based strategies.  
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Table 1 
Summary statistics for stock and bond excess returns 
 Close-to-close  Open-to-close 
 S&P 500 30-yr T-bond  S&P 500 30-yr T-bond 
Full sample: 1998/01/02~2011/12/30 

Mean 0.0083 0.0101  -0.0162 0.0103 
Std. dev. 1.3063 0.6583  0.9469 0.4878 
Minimum -11.7913 -3.1776  -7.5786 -2.8642 
Maximum 12.7225 4.0782  5.4979 3.7392 
Skewness -0.0502 -0.1790  -0.2070 -0.2550 
Kurtosis 12.4622 4.6266  7.2168 5.6524 
Correlation -0.3291  -0.2983 
Jarque-Bera 13162.92 407.76  2639.03 1072.40 

In-sample: 1998/01/02~2007/12/31 
Mean 0.0167 0.0052  -0.0183 0.0070 
Std. dev. 1.0914 0.5794  0.8386 0.4390 
Minimum -5.8841 -3.1776  -4.1744 -2.2361 
Maximum 5.6663 2.1609  5.4979 1.7129 
Skewness 0.0847 -0.3820  0.1097 -0.3546 
Kurtosis 5.5232 4.3290  5.5496 4.3006 
Correlation -0.2021  -0.2148 
Jarque-Bera 665.12 244.37  681.04 228.22 

Out-of-sample: 2008/01/02~2011/12/30 
Mean -0.0118 0.0220  -0.0110 0.0183 
Std. dev. 1.7189 0.8185  1.1685 0.5895 
Minimum -11.7913 -3.0347  -7.5786 -2.8642 
Maximum 12.7225 4.0782  4.6520 3.7392 
Skewness -0.1069 -0.0125  -0.4816 -0.1581 
Kurtosis 12.0504 3.9871  7.0979 5.8673 
Correlation -0.4681  -0.4066 
Jarque-Bera 3524.12 41.93  761.99 357.83 

Note: The table provides summary statistics for the daily excess returns (in percentage) on 
the S&P 500 index and the 30-year T-bond for the full and the sub- samples. Critical 
values for Jarque-Bera statistics at the 5% significance level for T=3528 (full sample), 
T=2496 (in-sample), and T=1032 (out-of-sample) are 5.98, 5.97, and 5.93, respectively. 
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Table 2 
Estimation results for stock and bond excess returns 
 GARCH HEAVY 

HEAVP-P HEAVY-V 

1
m  0.0000 

(0.0001) 
-0.0002 
(0.0002) - 

2
m  0.0001 

(0.0001) 
0.0001 

(0.0001) - 

11
c  0.0007 

(0.0002)* 
0.0013 

(0.0003)* 
0.0010 

(0.0002)* 

21
c  -0.0000 

(0.0001) 
0.0001 

(0.0001) 
-0.0001 

(0.0000)* 

22
c  0.0004 

(0.0001)* 
0.0004 

(0.0001)* 
0.0004 

(0.0001)* 

11
b  0.9737 

(0.0075)* 
0.8994 

(0.0244)* 
0.8453 

(0.0181)* 

22
b  0.9763 

(0.0054)* 
0.9636 

(0.0071)* 
0.9246 

(0.0104)* 

11
a  0.2121 

(0.0277)* 
0.3980 

(0.0439)* 
0.5208 

(0.0264)* 

22
a  0.1965 

(0.0212)* 
0.2648 

(0.0251)* 
0.3661 

(0.0222)* 

Log-L 18875.18 18935.22 - 
Log-L gains - 60.04 - 

i
l  

0.9931 
0.9923 
0.9918 

0.9285 
0.8666 
0.8089 

0.9890 
0.9858 
0.9723 

Note: The table presents parameter estimates with robust standard errors (in parentheses) 
of GARCH and HEAVY models using data from January 2, 1998 to December 31, 2007 
(2496 daily observations), while ‘*’ denotes statistical significance at the 5% level. Index 

1i =  refers to the S&P 500 index and 2i =  to the 30-year T-bond. Log-L stands for the 
joint log-likelihood by the model. Log-L gains report the gains of HEAVY-P over GARCH in 
Log-L. 

i
l  represents the eigenvalues of the conditional covariance matrix of daily returns 

and the conditional expectation of daily realized covariance matrix conditioned on the 
covariance stationary condition.   
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Table 3 
Out-of-sample performance of covariance matrix forecasts 
Forecast 
horizon 

(h ) 
GARCH
pt  

HEAVY
pt  VR DMW 1


 

10


 

1 7.042 6.990 101.984 2.074 0.585 5.856 
2 10.112 10.037 102.080 2.097 1.230 12.342 
3 12.482 12.386 102.086 2.167 1.856 18.660 
4 14.491 14.371 102.211 2.257 2.629 26.474 
5 16.263 16.129 102.183 2.172 3.253 32.818 
6 17.869 17.722 102.178 2.095 3.905 39.472 
7 19.348 19.196 102.106 1.981 4.419 44.741 
8 20.730 20.576 102.034 1.874 4.891 49.615 
9 22.030 21.876 101.930 1.765 5.233 53.183 

10 23.266 23.110 101.875 1.701 5.665 57.674 
11 24.444 24.286 101.823 1.637 6.075 61.963 
12 25.571 25.408 101.805 1.603 6.572 67.152 
13 26.654 26.487 101.774 1.560 7.014 71.797 
14 27.698 27.525 101.769 1.535 7.543 77.362 
15 28.706 28.530 101.765 1.502 8.079 83.004 
16 29.681 29.501 101.770 1.473 8.657 89.107 
17 30.627 30.445 101.754 1.432 9.129 94.144 
18 31.546 31.370 101.686 1.358 9.308 96.167 
19 32.443 32.275 101.584 1.274 9.249 95.733 
20 33.317 33.164 101.445 1.163 8.906 92.358 
21 34.170 34.033 101.298 1.048 8.422 87.502 
22 35.001 34.884 101.142 0.925 7.783 81.009 
23 35.816 35.721 100.967 0.787 6.909 72.055 
24 36.615 36.546 100.784 0.640 5.856 61.187 
25 37.398 37.358 100.584 0.477 4.559 47.727 
26 38.166 38.159 100.384 0.314 3.130 32.834 
27 38.919 38.947 100.166 0.136 1.410 14.813 
28 39.658 39.726 99.929 -0.058 -0.631 -6.639 
29 40.384 40.500 99.641 -0.293 -3.291 -34.724 
30 41.096 41.255 99.405 -0.485 -5.666 -59.896 

Note: The table reports the out-of-sample performance of the GMVP strategies. For each 
set of GMVP weights according to (9), we report the annualized average realized portfolio 
volatility ( p

i
t ), the variance ratio (VR) computed by 2, 2,

GARCH HEAVY
/p pt t , the Diebold-Mariano 

and West (DMW) forecast comparison test, and the average annualized basis point fees 
( h ) with id 0.05m =  from GARCH to HEAVY. The sample period is January 2, 2008 to 
December 30, 2011.  
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Figure 1 Realized volatility (annualized) and realized correlation on the S&P 500 index and the 30-year T-bond for the 
period January 2, 1998 and December 30, 2011. The estimates are generated using the multivariate realized kernel of 
Barndorff-Nielsen et al. (2011).  
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Figure 2 Conditional volatility (annualized) and conditional correlation (implied) on the S&P 500 index and the 30-year 
T-bond open-to-close excess returns for the period January 2, 1998 and December 31, 2007. The estimates are generated 
using the HEAVY and the GARCH.  


